Keelung - A Toolkit for Fast, Private and Secure
Applications

BTQ Technologies Corp.
March 2023

Abstract

Zero-knowledge proof techniques are revolutionizing the world of pri-
vacy and computation. However, developing zero-knowledge applications
is still a labor-intensive task and an error-prone process, partly because
the development tools are still far from mature. We present Keelung,
a domain-specific language and development toolkit for zero-knowledge
applications. By raising the abstraction level, Keelung makes it easy for
developers to focus on the business logic rather than the low-level circuit
design of the zero-knowledge proof. Additionally, Keelung is embedded
into Haskell, providing programmers with access to Haskell’s rich ecosys-
tem and extensive libraries, making the development of zero-knowledge
applications less burdensome.

Contents

1 Introduction|
[1.1 Background|o
1.2 Use Cases of Zero-Knowledge Proots|

12 Problems with privacy-preserving application development|
2.1 Lack of expressivity] L.

2.2 Pre-quantum proving systems| L.

2.3 Suboptimal/inefficient proofs|o L0

3 Hello, Keelung!|

4 How Keelung solves these problems|
4.1 Higher level of abstraction|.

4.3 Post-quantum proving systems|
[£:4 Cross-chain compatibility]
(A5 Fast compilation|

|5 How does Keelung work?|

5.2 Typeerasure|
.3 Rewriting compilation|00
P-4 Optimization| Lo o
Isi.;i g:ll!:llll !:Slll:illll‘:ll!zlll

6 xamples

7 Comparison|

[9Conclusion

10

13

15

15

1 Introduction

In this paper we propose Keelung, a zero-knowledge (ZK) cryptography de-
velopment toolkit for fast, private and secure applications. Keelung makes it
simple to build zero-knowledge proofs (ZKPs) for applications regardless of the
business logic or use case. Zero-knowledge cryptography has a bright future and
we want to make it easier for teams to build and ship zero-knowledge applica-
tions.

1.1 Background

zk-SNARK In this paper, we focus on a subclass of ZKP techniques that
enjoy particularly favorable properties. They are generally referred to as zk-
SNARKS, or Zero-Knowledge Succinct ARguments of Knowledge. In a highly
simplified form, the problem solved by a zk-SNARK can be roughly formulated
as follows. A prover P wants to prove to a verifier V, both computationally
bounded, that P knows a w s.t. y = f(x,w), where f is a public (ZK) “circuit”
with public input = and public output y. Using a ZK proving system, P can
generate a proof 7 that is relatively small, say O(log |f|), where |f| is the size
of f measured in, e.g., number of arithmetic gates contained in f. With f,z,y
and 7, V can efficiently verify that P indeed knows a secret w s.t. y = f(z,w),
yet V learns nothing more about w beyond this fact.

Such a formulation makes zk-SNARKSs useful for a wide range of internet
applications. For instance, they can be used for selective revelation to verify
a user’s identity without disclosing their personal information, such as name,
date of birth, or social security number. Similarly, hospitals can share relevant
parts of patients’ medical records with third parties, such as insurance agents,
while protecting patients’ privacy. Additionally, zk-SNARKSs can verify the au-
thenticity of transactions on a blockchain without recording or revealing certain
details, such as the sender/receiver or the exact amount transacted. The suc-
cinctness of zk-SNARK proofs leads to a popular scaling solution for blockchains
and similar systems, known as ZK rollups. We stress that in all these zkApps,
VY may be able to, and often indeed does, learn some information about w from
the fact that w is a solution to the equation y = f(z,w). This is not a problem
in some zkApps such as ZK rollup, but when it is indeed a problem, developers
should take extra caution to limit the information thus leaked. Keelung and
any underlying ZK proving systems provide no guarantee whatsoever when it
comes to such privacy breach.

Rank-1 constraint system (R1CS) RICS is a popular intermediary repre-
sentation of a ZK circuit, which we denote as f in the previous section. It is a
type of constraint system, a mathematical structure that consists of a set of vari-
ables and constraints that define the relationships between those variables. To
encode a ZK circuit f as mentioned previously in R1CS, we need to find matrices
A, B, C of appropriate sizes s.t. Az® Bz = Cz, where z = [1 u w x y]t, U

a set of auxiliary variables, and ® the Hadamard (coordinate-wise) product of
vectors. The necessity of having u for encoding more complicated ZK circuits
f should be apparent, as an R1CS expression can only natively encode (most
but not all) quadratic relations in variables x,y,w. To encode a relation of a
higher degree, for example, y; = 3, we can create an auxiliary variable u; and
set u; = xf This way we can encode the original relation y; = x? as Y; = T;u;,
which can be encoded in R1CS fairly easily.

ZK DSL Domain-specific languages (DSLs) are programming languages cre-
ated for a specific domain or application. They have become increasingly pop-
ular in recent years due to their greater efficiency and effectiveness in perform-
ing specific tasks compared to general-purpose programming languages. The
benefits of using a DSL include providing a higher-level, more intuitive way
to describe domain-specific computations, facilitating the involvement of non-
experts in the domain, and abstracting away irrelevant details of the underlying
computing systems. In the field of zero-knowledge application (zkApp) devel-
opment, there has been a recent surge of new DSLs, such as Cairo, Cairo [I],
Circom [2], Noir [3], ZoKrates [4], and others. While most of these DSLs are
imperative, there have been attempts to adopt a more functional approach, such
as Snarkl [5], which provides a basis and serves as a great inspiration for our
work in this paper.

1.2 Use Cases of Zero-Knowledge Proofs

Zero-knowledge proofs are a potent tool with a broad range of applications
in today’s digital world. Here are six examples of how zero-knowledge proofs
can enhance security and privacy in everyday transactions:

1. Privacy-Preserving Analytics: Zero-knowledge proofs can be used to
enable secure and private data analysis without revealing sensitive in-
formation, making them useful for applications in business intelligence,
data analytics, and machine learning. For instance, a company could use
zero-knowledge proofs to demonstrate that its revenue is above a specific
threshold without disclosing the actual revenue number.

2. Identity Verification: With the rise of online platforms, verifying identi-
ties has become increasingly important. Zero-knowledge proofs can enable
secure identity verification without disclosing any unnecessary personal in-
formation. This can be particularly useful in cases where a user wants to
prove their age or eligibility for a certain service without revealing sensitive
personal details.

3. Supply Chain Management: In today’s global marketplace, supply
chains can be exceedingly complex. Zero-knowledge proofs can help en-
sure the authenticity and integrity of products throughout the supply
chain, from manufacturing to delivery. This can help prevent counterfeit

products and guarantee that consumers receive the products they paid
for.

4. Anonymous Verifiable Voting: Anonymous verifiable voting can pre-
vent voter fraud and ensure the integrity of election processes. By provid-
ing a transparent and secure system that allows voters to verify that their
vote was counted correctly without compromising their privacy, this vot-
ing method can help promote trust in the electoral process and encourage
greater public participation.

5. Machine Learning and Artificial Intelligence: Using zero-knowledge
proofs, machine learning inference can be performed on edge devices with-
out sending the input to centralized servers. Proofs enable hiding both
sensitive input data and the model parameters from public view and allow
downstream entities verify the input was correctly processed to yield the
reported output.

6. Gaming: Zero-knowledge proofs are an effective tool in gaming to allow
players to prove that they have achieved certain in-game accomplishments
or reached specific levels without revealing sensitive information about
their game strategies or progress. This enhances the gaming experience
by providing a secure and confidential way for players to earn rewards and
recognition for their achievements without having to disclose any personal
information or trade secrets.

2 Problems with privacy-preserving application
development

Zero-knowledge proof techniques are gaining significant attention in the tech-
nology industry for their potential to bring revolutionary changes from the
ground up, particularly in the field of privacy-centric applications. After nearly
a decade of extensive research and development, however, developing ZK appli-
cations (zkApps) is still a labor-intensive task and an error-prone process. This
is primarily because the field is still relatively young and the tooling ecosystem
has not yet sufficiently matured. Here are some observations we noticed when
we took a look at today’s zkApp development landscape.

2.1 Lack of expressivity

Developers face a significant challenge when working with most existing zero-
knowledge application (zkApp) development toolkits. These toolkits often lack
a sufficient level of abstraction, requiring developers to possess a deep under-
standing of the underlying mathematical principles behind zero-knowledge proof
(ZKP) techniques. This level of expertise is necessary to achieve the intended
functionality of the zkApp and to avoid common errors. Additionally, developers
using low-level programming languages must manually translate their high-level

business logic, a complex and challenging process that can hinder development
efforts. The requirement to adopt a new mode of thinking represents a signif-
icant barrier to entry for developers creating zkApps, leading to the potential
for low-quality or insecure implementations.

2.2 Pre-quantum proving systems

Despite growing awareness and adoption of zero-knowledge proof (ZKP) tech-
nologies among researchers and developers, few are considering the long-term
security implications of the ZK proving systems being utilized. Many of these
systems are designed with a focus on performance and target pre-quantum com-
puting environments. As a result, the ZK proofs generated by these systems are
vulnerable to attacks by large-scale quantum computers, which undermines the
fundamental concept of zero-knowledge. It is imperative that the development
of zero-knowledge applications (zkApps) not be left behind in the transition to
post-quantum cryptography, as it is essential to ensure the continued security
of these systems.

2.3 Suboptimal/inefficient proofs

A significant limitation of programming in a low-level language is the need for
developers to manually optimize their code for the downstream zero-knowledge
(ZK) proving system while simultaneously encoding the intended zkApp’s busi-
ness logic. Hand optimization requires a deep understanding of the underlying
ZK proving system, which can be highly challenging, particularly when dealing
with complex data types such as high-dimensional arrays or vectors that are
commonly found in a wide range of zkApps. Consequently, only a small number
of highly skilled cryptographers/programmers possess the ability to implement
reasonably optimized zkApps, creating a bottleneck that hinders the wider and
more rapid adoption of ZKP technologies.

3 Hello, Keelung!

To address these challenges, we present Keelung, a domain-specific language
(DSL) and toolkit designed to address the challenges of developing fast, private,
and secure zero-knowledge applications (zkApps). Keelung aims to provide a
simplified approach for developers to build and deploy zkApps irrespective of
their use cases or business logic. Keelung offers a unique solution that defies
the trade-off between speed and abstraction. By embedding itself in Haskell, a
renowned programming language known for its safety and reliability, developers
can write powerful and secure software with confidence. The incorporation of
Haskell’s advanced type system allows for high-level ZKPs with the ability to
leverage Haskell’s mature ecosystem and tooling. Haskell’s functional program-
ming language and advanced type system enable the development of correct pro-
grams with ease at any level of abstraction. Keelung’s integration into Haskell

allows for the use of its vibrant ecosystem and community, including features
such as typeclasses, which provide a natural syntax for Keelung. Furthermore,
developers can define custom datatypes on top of Keelung to meet their spe-
cific needs. Keelung’s modular design allows developers to upgrade their ZKPs
seamlessly from pre- to post-quantum. This is facilitated through the use of
several modular ZK proving systems, both pre- and post-quantum, which the
resulting circuits can plug-and-play with. This feature offers maximum flexi-
bility to developers with minimal friction for upgrading zkApps when the need
arises.

4 How Keelung solves these problems

4.1 Higher level of abstraction

Keelung offers a unique solution that overcomes the tradeoff between speed
and abstraction by embedding itself in Haskell. This approach enables develop-
ers to leverage Haskell’s advanced type system and mature ecosystem, providing
the ability to write high-level zero-knowledge proofs (ZKPs) with confidence.
Haskell is a functional programming language renowned for its safety and reli-
ability, facilitating the construction of correct programs with any desired level
of abstraction. By embedding Keelung in Haskell, developers can take advan-
tage of the vibrant ecosystem and community that comes with the language.
Haskell’s Typeclass feature provides a natural syntax for Keelung while allowing
developers to define custom data types to meet their specific needs.

4.2 Flexible ZKPs

Keelung has a modular design that allows for the straightforward upgrade of
zero-knowledge proofs (ZKPs) from pre- to post-quantum, which is essential for
ensuring the long-term security of zkApps. Keelung achieves this by providing
several modular proving systems, both pre- and post-quantum, that a circuit can
plug-and-play with. The modular architecture of Keelung enables developers to
upgrade their zkApps with minimal friction when the time is right, providing
the flexibility necessary to adapt to future security requirements. Keelung’s
modular design also allows for the integration of future advancements in zero-
knowledge proof systems seamlessly.

4.3 Post-quantum proving systems

Keelung was designed with post-quantum security in mind. As such, de-
velopers have access to post-quantum proving systems, ensuring that proofs
generated with Keelung are not vulnerable to quantum attacks. This approach
enables developers to generate R1CS circuits with Keelung in combination with
post-quantum proving systems, facilitating the development of zkApps with

confidence in their long-term security. By incorporating post-quantum prov-
ing systems with Keelung, developers can confidently create zkApps that are
secure, even in the face of quantum computing, laying the groundwork for a
secure future for zero-knowledge proof technologies.

4.4 Cross-chain compatibility

One of the significant advantages of Keelung is the flexibility it provides
developers in terms of the target environment for proof verification. Keelung
enables developers to deploy zkApps in any virtual environment capable of zero-
knowledge proof verification, providing a versatile solution that can adapt to
different use cases and requirements. Having flexibility over the target verifi-
cation environment is a valuable tool for developers seeking to deploy zkApps
in different ecosystems. The ability to change the target environment also en-
ables developers to remain flexible and agile in their approach, facilitating the
development of innovative and groundbreaking zkApps across different virtual
environments.

4.5 Fast compilation

Keelung is designed to provide extremely fast zero-knowledge proof gener-
ation, making it a valuable tool for developers seeking to optimize the perfor-
mance of their zkApps. Keelung achieves this by leveraging Haskell’'s power-
ful abstraction capabilities to enable fast compilation of post-quantum crypto-
graphic primitives. Keelung reduces the number of constraints associated with
each circuit, which in turn drastically reduces the number of rich computations
required at compilation time. This optimization approach enables Keelung to
achieve faster zero-knowledge proof generation times, allowing developers to
create efficient and high-performance zkApps that meet the demands of today’s
computing landscape. The reduction of constraints associated with each circuit
also improves the scalability of Keelung, allowing it to handle larger and more
complex circuits efficiently. This scalability feature is critical for developers look-
ing to create zkApps for real-world applications that may involve a large number
of participants and complex computations. In combination with Haskell’s ab-
straction power, Keelung provides developers with a high-performance solution
for zero-knowledge proof generation that is safe, efficient and scalable. This op-
timization approach enables developers to create fast and reliable zkApps that
meet the performance demands of today’s computing landscape while maintain-
ing the high levels of security required in zero-knowledge proof technologies.

5 How does Keelung work?

A Keelung program will go through several stages: elaboration, type erasure,
rewriting compilation, optimization, and circuit construction. At the end of a

successful compilation, an R1CS circuit is generated. These stages are explained
in more detail as follows.

5.1 Elaboration

Keelung provides developers with a variety of high-level constructs that do
not necessarily exist in R1CS. In order to convert these constructs into R1CS,
Keelung programs will need to go through an elaboration stage. For example,
loops will be unrolled into repetitive instructions, while array manipulations will
be resolved into simple variable assignments. Elaboration essentially strips away
syntactic sugar, expressing a user program in a much smaller core language that
is easier to process in the subsequent stages.

5.2 Type erasure

Like Haskell and other strongly-typed programming languages, Keelung helps
developers to write safer programs by distinguishing between concepts like an
array of Booleans or numbers. These type distinctions are erased at this stage
to reduce overhead in the generated R1CS circuit. This is similar to a vanilla
Haskell program: the type system is mostly visible at compile time to provide a
strong guarantee of correctness; the information on types is then erased before
the binary is generated so the runtime price we need to pay for having the extra
safety guarantee is minimal.

5.3 Rewriting compilation

Complex expressions are then replaced with simpler equivalents to reduce
the size of the resulting ZK circuit. Up until this stage, the whole program
is still in the form of a syntax tree, with variables as leaves and operators as
internal nodes. This syntax tree will be traversed and broken down into small
constraints that describe the relationship between variables in the syntax tree.
Take A = (B % C) 4+ (D % E) as an example. Because this expression is too
complicated to directly encode into R1CS, it will be compiled into 3 smaller
constraints: A =X+ Y, X =B« C, and Y =D % E. These constraints will

then be used to construct an R1CS circuit (Figure 1f).

5.4 Optimization

Many of these constraints may be redundant or can be replaced by simpler
constraints that express equivalent relationships among the variables. Some-
times we can even eliminate certain variables altogether. Ideally, we would like
to remove as many redundant constraints as possible as the number of con-
straints will significantly impact the size of the resulting ZK circuit. We have
designed a set of optimization passes that will remove redundant constraints and
simplify the remaining ones. These constraints will go through these optimiza-
tion passes repeatedly until the number has been reduced to a bare minimum.

A= (BxC)+ (Dx*E)

A X Y
X =BxC
Y =D x E

Figure 1: An example of compiling a syntax tree into constraints

5.5 Circuit construction

The final stage is to construct an R1CS circuit from the remaining constraints.
An RI1CS circuit is made of a set of polynomials that describe the relationship
between variables, and they are actually not that different from the constraints
we have been obtained so far. All we need to do is to convert the constraints
into polynomials and arrange them in an appropriate way to fit the selected ZK
proving system’s requirements.

6 Examples

By design, Keelung has a very small core language and leverages Haskell’s rich
ecosystem and tooling to achieve a wide variety of functionalities. The core
language has native support for three primitive types: Field (the underlying
field of the proving system), Ulnt n (unsigned n-bit integers), and Boolean.

10

Unsigned integer. It is straightforward to manipulate these primitive types
in Keelung. However, the design of the unsigned integer type may require a bit
more explaination. Unlike how it is handled in most functional programming
languages, we decided to include some behavior of boolean and bitvector in it
because it is very common in a lot zkApps to manipulate certain bits in an
unsigned integer.

workMask :: Comp (Ulnt 32)
workMask = do
word <— inputUlnt @32
return (word .&. Oxab)

Here we are taking a selection of bits from an unsigned integer by bitwise and’ing
it with a bitmask Oxab. It is safe to do because we know the bit length of the
unsigned integer, so we can pad the bitmask with zeros to fit the length of word.

Dependent type. As we have seen, encoding the length of an unsigned inte-
ger in its type enables extra safety check at compile time.

example :: Comp (Ulnt 8)
example = do
byte <— inputUlnt @8
word <— inputUlnt @32
return (byte .&. word) — TYPE ERROR !!

For example, it is ambiguous to bitwise and two unsigned integers of different
lengths. We can either extend the shorter one or truncate the longer one, and
depending on the choice, we will have two different resulting types. It is unclear
which one is the behavior that the programmer has in mind when he or she
writes down this expression. Therefore, Keelung would reject this code snippet
by throwing a type error, forcing the programmer to specify the exact behavior
he or she intend to have.

Metaprogramming. With Keelung’s metaprogramming capability, we can
also use native Haskell functions to simplify the task of writing Keelung pro-
grams.

addN :: Field —> Comp Field
addN n = do

X <— input

return (x + n)

example :: Comp Field

example = do
x <— addN 3
y <— addN 5

return (x * y)

11

Obviously this should translate to the following R1CS constraint: (x + 3)x(y + 5) = out.
This way the programmer can write down common programming idioms us-

ing Haskell functions, preferably with accurate and descriptive names, to make
Keelung programs easier to understand and maintain.

Loop. Keelung is a functional DSL. This means that we usually use map and
fold to implement control loops. In fact, we need to use the monadic versions
of them in order to keep a record of the context, as well as to generate and
accumulate the resulting constraints.

loopy :: Comp [Field]
loopy = mapM addN [0, 1, 2, 9876543]

For example, the effect of Loopy is equivalent to loop over the four elements (0,
1, 2, and 9876543) in the array, applying the addN function to each of them.

Conditional. It is important to be able to express conditional branches in
any programming languages.

is42 :: Comp Field
is42 = do
x <— input
cond (x ‘eq‘ 42)
100 — then
1 — else

While this should be self-evident, its R1CS circuit is a bit non-trivial and thus
requires some elaboration. In R1CS, we usually need to “glue together” both
branches of a conditional, effectively “executing” both of them and discard the
irrelevant result:

X — 42 = b_.inverted
l¥b_inverted + 100%(1 — b_inverted) = out

Assertion. A zkApp naturally contains a number of assertions, expressing
the relationships among the input and output variables. This is implemented in
a monadic way in Keelung, and we also expose this interface to the programmer
so that they can have finer control over assertions. For example, Keelung pro-
grammers can simply assert the equality between two input variables as follows.

example :: Comp ()
example = do

X <— input

y <— input

assert (x ‘eq‘ y)

More complicated equality tests between compound variables can be constructed
in a similar way.

12

7 Comparison

In this section, we will run a larger example of verifying Merkle tree member-
ship, first in Circom and then in Keelung, to highlight the difference between
the two DSLs. We choose Circom because it is among the most popular ZK
DSLs, but the conclusion and insight should apply to other imperative ZK DSLs
as well.

First, we show typically (but not necessarily optimally) how to prove that a
leaf is in a given Merkle tree in Circom.

template MerkleTreelnclusionProof(nLevels) {
signal input leaf;
signal input pathIndices|[nLevels];
signal input siblings [nLevels];

signal output root;

component poseidons[nLevels];
component mux|[nLevels];

signal hashes[nLevels + 1];
hashes [0] <== leaf;

for (var i = 0; 1 < nLevels; i++) {

pathIndices[i] % (1 — pathIndices[i]) == 0;
poseidons|[i] = Poseidon (2);

mux[i] = MultiMuxl1 (2);

mux[i].c[0][0] <== hashes[i];

mux[i].c[0][1] <= siblings|[i];
mux[i].c[1][0] <== siblings[i];
mux[i].c[1][1] <= hashes[i];

mux[i].s <= pathIndices[i];

poseidons[i].inputs[0] <== mux[i].out[0];
poseidons[i].inputs[l] <== mux[i].out[1];

hashes[i + 1] <== poseidons[i].out;

}

root <== hashes|[nLevels];

13

We can see that, as part of the witness, we need to have an array of the hash
values of the missing sibling subtree. In addition, we need to know whether the
missing sibling subtree is to our left or to our right. This information is recorded
in the array pathIndices. We then go through the authentication path from
leaf all the way to root, verifying all the hash values along the path.

The same verification is implemented in Keelung as follows.

getMerkleProof :: Int —> Comp Field
getMerkleProof depth = do
leaf <— inputField
siblings <— inputs2 depth 5
indices <— inputs depth
(-, digest) <—
foldlM
(\(i, digest) p —> do
assert (digest ‘eq‘ choose p (access indices 1))
p’ <— hash p >>= reuse
return (i + 1, p’)
)
(0, leaf)
siblings
return digest

As we can see, it seems a bit more concise because we use foldM (the monadic
version of fold) to replace the loop in the Circom implementation. Using
fold, we can express an extremely wide variety of language constructs and use
patterns in imperative languages [6].

Intuitively speaking, a fold transforms an inductively defined data structure
into another, possibly also inductively defined data structure in a systematic
way. The specific transformation depends on the source data structure, which
can be specified by the Foldable typeclass in Haskell. A canonical example is
a linear array, but it can be easily generalized to other, more complicated data
structures such as higher-dimensional arrays or trees. Given a source data struc-
ture, we then need to supply fold with a function of “stepwise specification”
that takes (a) the current component of the source data structure to be folded,
as well as (b) the element of the target type we have constructed so far, and
then returns a new element of the target type resulted from folding the former
(a) into the latter (b). This way, fold can start from an initial element of the
target type and (figuratively) fold the source data structure into the target.

With this in mind, now we should be able to better understand this example;
here the “stepwise specification” checks whether the hash value of the subtree we
have computed so far matches the corresponding one in the given authentication
path. If it does, we then compute the hash value of those of the two subtrees
and pass it on as that of the current subtree. Starting from bottom and going
up, this is precisely what we do to check whether a leaf is in a Merkle tree or
not.

14

8 Roadmap

In the current design of Keelung, our own Keelung compiler is responsible
for circuit compilation.

In our future roadmap, we plan to transform Keelung by integrating it with
OpenZL, an open-source library that aims to bridge the gap between high-level
languages and low-level libraries that require cryptographic primitives. This
integration will allow Keelung to benefit from ECLAIR, the Embedded Circuit
Language and Intermediate Representation, which will also handle the circuit
compilation for the proving system in the choice of developers. Developers will
be able to use Keelung to write high-level business logic and choose a suitable
proving system plugin provided by OpenZL for their application. By integrating
with OpenZL, Keelung will make it easier for developers to use the DSL and
choose between different proving systems, resulting in a more powerful and

efficient tool for secure application development (Figure 2)).

Current Future

Keelung Syntax

elaboration + type erasure elaboration + type erasure

Internal Syntax passes of rewriting Internal Syntax passes of rewriting

translate

compile

Constraints passes of optimisation ECLAIR

compile
translate

RICS

RICS Plonkish

Figure 2: The comparison between the current design and future integration

9 Conclusion
In this paper, we have introduced Keelung, a DSL and development toolkit

for building fast, private, and secure zkApps. We have argued for the impor-
tance of raising the level of abstraction in zero-knowledge application develop-

15

ment which Keelung achieves by abstracting away the details of the underlying
zero-knowledge proving system. While still in its early stages of development,
Keelung shows promise in its potential to make ZK programming more acces-
sible and user-friendly. We plan to extend Keelung’s capabilities by adding
native support for important operations like integer division and extending its
backend to support more families of zero-knowledge prooving systems, such as
PLONK. We ultimately hope that Keelung will play a crucial role in developing
zkApps, bringing the focus closer to the application’s business logic and mak-
ing ZK programming easier for developers. Interested developers can access
the alpha version of Keelung on Github|and visit the Keelung website| for more
information.

References

[1] https://starkware.co/cairo/
[2] https://docs.circom.io/

[3] https://aztec.network/noir/
[4] https://zokrates.github.io/

[5] G. Stewart, S. Merten, and L. Leland. “Snarkl: Somewhat practical, pretty
much declarative verifiable computing in Haskell.” International Symposium
on Practical Aspects of Declarative Languages. pp. 36-52, Springer 2018.

[6] G. Hutton. “A tutorial on the universality and expressiveness of fold.” Jour-
nal of Functional Programming, 9(4), pp. 355-372, 1999.

16

https://github.com/btq-ag/keelung
https://keelung.btq.com/
https://starkware.co/cairo/
https://docs.circom.io/
https://aztec.network/noir/
https://zokrates.github.io/

	Introduction
	Background
	Use Cases of Zero-Knowledge Proofs

	Problems with privacy-preserving application development
	Lack of expressivity
	Pre-quantum proving systems
	Suboptimal/inefficient proofs

	Hello, Keelung!
	How Keelung solves these problems
	Higher level of abstraction
	Flexible ZKPs
	Post-quantum proving systems
	Cross-chain compatibility
	Fast compilation

	How does Keelung work?
	Elaboration
	Type erasure
	Rewriting compilation
	Optimization
	Circuit construction

	Examples
	Comparison
	Roadmap
	Conclusion

